Diversity in phonological domains

Balthasar Bickel & Kristine A. Hildebrandt University of Leipzig www.uni-leipzig.de/~autotyp

The prosodic hierarchy

- μ Mora
- σ Syllable how direct reference to morphological structure
- Φ Foot
- ω Word: direct reference to morphological structure, at most one stem
- PhP Phonological phrase: reference to more than one stem and/or syntactic phrases
- IntP Intonation Phrase: multiple PhP
- U Utterance

Booij 1983, Selkirk 1984; Nespor & Vogel 1986, McCarthy & Prince 1993, Hall 1999, Peperkamp 1997, etc.

Predictions of the Prosodic Hierarchy

- 1. Phonological processes cluster on exactly one domain between Φ and PhP, i.e. one domain referencing a single stem: the word (ω)
- More domains between Φ and PhP only by strict recursion (same process, e.g. stress, on recursive levels: Peperkamp 1997)

 $[_{\omega}(_{\phi}tene) [_{\omega}(_{\phi}conte)]]$ 'you=of.it=tell'

3. Domains stack only as proper containment (proper bracketing; Itô & Mester 1992): no *[... (...] ...)

<u>Goals</u>

1. Test theory-based hypotheses against a rich database

N (languages with *exhaustive* information): 31

N (domains): 304

Focus on data from Sino-Tibetan because of its great internal diversity and controversial status of "words"

2. Explore the typological distribution of word domains

Prediction 1: only one ω

Counterexamples: some languages have more than one word domain, e.g. Lahu (Matisoff 1973, 2003):

I. Stress unit: prefix + stem

a. [ɔ̀-u] NMLZ-lay.egg
Not a single-stress unit: stem + suffix
b. [vɨ̈-tā] buy-PFPM

II. Tone change: stem + suffix
c. ši-è > [ší-è] yellow-ADVLZ
No tone change: prefix + stem
d. á-qhâ > [á.qhâ] NFP-ragweed

Lahu word domains

PF Σ SF

Stress

Tone Change

Chukchi multiple domains (subset)

CF1 PF Σ CF2 SF CL

Prediction 2: more ω only by recursion

Counterexamples: some languages stack by "pseudo-recursivity" (different domains, different processes), not proper recursivity, e.g. Belhare:

- I. Intersonorant voicing: stem + suffix + enclitic
- a. ka-teĩ-?-ni-kak > ka(_wteĩ?niga), *(_wkareĩ?niga) 1sP-hit-NPST-NEG-2 'You won't hit me.'
- II. Final velar drop: prefix + stem + suffix + enclitic
- b. ka-ak-lu-kak=phu > $(_{\omega}$ kaaklugakphu), * $(_{\omega}$ kaa) $(_{\omega}$ lugakphu) 1sP-OPT-tell-2A=REP 'You may tell me, they say'

Prediction 3: Proper containment

Counterexamples: in some languages the biggest ω in a particular language may not include all available affix types at once, cf. Lahu again:

	PF	Σ	SF
Stress			
Tone Change			
NO RULE			

Interim summary

- Our database does not support the predictions entailed by the Prosodic Hierarchy Hypothesis.
- Instead, we find substantial diversity.

How, then, do p-domains distribute typologically? What, if anything, governs their distribution?

Typological distribution

Test genealogical and areal factors

- Area: within Sino-Tibetan
- Stock: Sino-Tibetan compared to others
- against chance by using permutation methods (Janssen, Bickel & Zúñiga 2005)

But, how to measure the distribution?

Typological measurements

- 2-13 ω per language
- Need
 - some measure of <u>coherence</u> ('short', 'disruptive, noncohering' vs. 'long', 'all-encompassing' pw)
 - some measure of <u>diversity</u> (2 ω vs. 13 ω)

Coherence (c)

- Coherence: how many morpheme types are included in the domain? (stem alone? stem plus prefix? plus prefix and suffix? etc.)
- N (morpheme types in domain) correlates with N (available morpheme types in the language):

Kendall's τ = 3.55, p (rnd) = .001, N = 303 from 30 languages

Coherence (c)

• Coherence of a domain is relative to the number of available morphemes:

 $C = \frac{N \text{ (morpheme types in domain)}}{N \text{ (available morpheme types)}}$

Is *c* a typological (cross-linguistic) variable?

Coherence (c)

The variance between languages is greater than the variance within languages: F(30, 466) = 3.89, p(rnd) = .0001

Diversity (d)

- Since *c* is a typological variable, it is reasonable to take a *per-language* measurement on language-internal diversity
- $d = \delta$, the number of non-isomorphic domains
- but δ depends on the number of *logically possible* nonisomorphic domains, e.g. if there is only {prefix, stem}, there are only 3 possible domains: (pf-st), (pf), (st)
- possible number of domains with *v* morpheme types:

Diversity (d)

- Ergo, define *d* relative to number of possible domains
- But *d* also depends (obviously) on the number of phonological processes in the language φ:

Kendall's *t* = 4.25, *p* (rnd) =2.2e-16, *N* (languages) = 31

Diversity (d)

• Therefore, $d = \frac{\delta}{\varphi \sum_{k=1}^{\nu} k}$

Areal factors

- Our db focuses on Sino-Tibetan, so test within ST
- Prominent areal factors in ST
 - Indosphere vs. Sinosphere (Matisoff 1991, 1999)
 - plus "Buffer Sphere" between the two

• Order of Adj&N (Dryer 2004, 2005)

 χ^2 (4,32) =14.35, p (rnd) = .0001

• Tone (Matisoff 1999, Maddieson 2005, own data)

 χ^2 (4,20) =14.96, p (rnd) = .0001

• Fusion of negation markers (Bickel & Nichols 2005)

 $\chi^2(4,10) = 6.67, p (rnd) = .046$

• Fusion of case markers (Bickel & Nichols 2005)

 $\chi^2(4,12) = 7.22, p (rnd) = .05$

Areal factors in ST: testing c and d

• Coherence (*c*)

F(2,114) = .88, p(rnd) = .41

Combined Indosphere and Buffer Sphere: F(1,115) = .04, p(rnd) = .84

Areal factors in ST: testing c and d

• Diversity (*d*)

F(2,8) =.08, *p*(rnd) = .93

Combined Indosphere and Buffer Sphere: F(1,9) = .19, p(rnd) = .64

Areal factors: summary

- Despite ample evidence for Matisoff's spheres in ST, no evidence for sphere effects on *c* and *d*
- ST seems surprisingly consistent!
- Are *c* and *d* genealogically stable?
- Database still too poor for extensive testing, but there is *preliminary* evidence that between-stock variance is larger than within-stock variance
 - Sino-Tibetan (10)
 - Pama-Nyungan (3)
 - Indo-European (3)

<u>Genealogical factor: stock x coherence</u>

F (2, 282) = 4.09, p (rnd) =.017 — preliminary, small non-ST samples!

<u>Genealogical factor: stock x diversity</u>

F(2, 13) = 2.58, *p*(rnd) =.10

<u>Conclusions</u>

Factors governing the distribution of phonological word domains

- no support for universal constraints
- no support for areal patterns (spheres) within Sino-Tibetan
- limited support for genealogical stability, perhaps on the stock level

 \bigcirc Overall distribution result of individual historical developments

Contrast with coherence of individual formatives (case, negation) that do evidence areal patterns in Sino-Tibetan

- individual formatives can escape the overall coherence profile of a language
- further support for individual historical sources of the observed distribution

Acknowledgments

The AUTOTYP research team

- Johanna Nichols (Co-Director, Berkeley)
- Balthasar Bickel (Co-Director, Leipzig)
- Kristine Hildebrandt (Post-Doc, Leipzig)
- Tracy Alan Hall (Research Associate, Bloomington)
- Fernando Zúñiga (Research Associate, Santiago)
- RAs in Berkeley: Gabriela Caballero, Suzanne Wilhite
- RAs in Leipzig: Michael Riessler, Sven Siegmund, Sindy Poppitz, Franziska Crell, Jenny Seeg, Thomas Goldammer, Anja Gampe, Sebastian Hellmann
- Past team members: Kathi Stutz, Josh Wilbur, Rebecca Voll, Alena Witzlack-Makarevich, Sandra Biewald, Aimee Lahaussois-Bartosik, Dave Peterson, Keith Sanders
- Funding: Swiss NSF Grant Nos. 08210-053455 (1998-2001, Bickel) and 610-0627 (2001-2002, Bickel), German DFG Grant No. BI 799/2-1 (2003-2005, Bickel & Hall), US NSF Grant No. 96-16448 (1998-2001, Nichols)