Diversity in phonological domains

Balthasar Bickel \& Kristine A. Hildebrandt University of Leipzig www.uni-leipzig.de/~autotyp

The prosodic hierarchy

$\left.\begin{array}{ll}\mu & \text { Mora } \\ \sigma & \text { Syllable } \\ \Phi & \text { Foot }\end{array}\right\}$ no direct reference to morphological structure	
ω	Word: direct reference to morphological structure, at most one stem
PhP	Phonological phrase: reference to more than one stem and/or syntactic phrases
IntP	Intonation Phrase: multiple PhP
U Utterance	
Booij 1983, Selkirk 1984; Nespor \& Vogel 1986, McCarthy \& Prince 1993, Hall 1999, Peperkamp 1997, etc.	

Predictions of the Prosodic Hierarchy

1. Phonological processes cluster on exactly one domain between Φ and PhP , i.e. one domain referencing a single stem: the word (ω)
2. More domains between Φ and PhP only by strict recursion (same process, e.g. stress, on recursive levels: Peperkamp 1997)

Neapolitan Italian: [ん[${ }_{\omega}(\phi$ cónta) $]$ (${ }_{\phi}$ ténnə)] 'tell=you=of.it'

$$
\left[\omega \left(\phi \text { tənə) } \left[\omega \text { (}{ }_{\phi}\right.\right.\right. \text { cóntə)]] 'you=of.it=tell' }
$$

3. Domains stack only as proper containment (proper bracketing; Itô \& Mester 1992): no *[... (...] ...)

Goals

1. Test theory-based hypotheses against a rich database
N (languages with exhaustive information): 31 N (domains): 304
Focus on data from Sino-Tibetan because of its great internal diversity and controversial status of "words"
2. Explore the typological distribution of word domains

Prediction 1: only one ω

Counterexamples: some languages have more than one word domain, e.g. Lahu (Matisoff 1973, 2003):
I. Stress unit: prefix + stem
a. [う̀-u] NMLZ-lay.egg

Not a single-stress unit: stem + suffix
b. [vī̀-tā] buy-PFPM
II. Tone change: stem + suffix
c. ši-દ̀ > [ší-દ̀] yellow-ADVLZ

No tone change: prefix + stem
d. á-qhâ > [á.qhâ] NFP-ragweed

Lahu word domains

PF $\quad \Sigma \quad$ SF

Stress

Tone Change

Chukchi multiple domains (subset)

CF1 PF Σ CF2 SF CL

Vowel harmony
Vowel glottalization
Nasal coda P.O.A. assim.
*V-V: Deletion Resolution
*V-V: Epenthesis
*V-V: Glide formation

Prediction 2: more ω only by recursion

Counterexamples: some languages stack by "pseudo-recursivity" (different domains, different processes), not proper recursivity, e.g. Belhare:
I. Intersonorant voicing: stem + suffix + enclitic
a. ka-teĩ-?-ni-kak $>\operatorname{ka}{ }_{\omega}$ teĩ?niga), * ${ }_{\omega}$ kareĩ?niga)

1sP-hit-NPST-NEG-2 'You won't hit me.'
II. Final velar drop: prefix + stem + suffix + enclitic
b. ka-ak-lu-kak=phu > (${ }_{\omega}$ kaaklugakphu), *(${ }^{*}$ kaa) ${ }^{(}{ }_{\omega}$ lugakphu)

1sP-OPT-tell-2A=REP 'You may tell me, they say'

Belhare Pseudorecursivity (Partial)

Prediction 3: Proper containment

Counterexamples: in some languages the biggest ω in a particular language may not include all available affix types at once, cf. Lahu again:

$$
\begin{array}{lll}
\text { PF } & \Sigma & \text { SF }
\end{array}
$$

Stress

Tone Change

NO RULE

Interim summary

- Our database does not support the predictions entailed by the Prosodic Hierarchy Hypothesis.
- Instead, we find substantial diversity.

How, then, do p-domains distribute typologically? What, if anything, governs their distribution?

Typological distribution

Test genealogical and areal factors

- Area: within Sino-Tibetan
- Stock: Sino-Tibetan compared to others
- against chance by using permutation methods (Janssen, Bickel \& Zúñiga 2005)

But, how to measure the distribution?

Typological measurements

- 2-13 ω per language
- Need
- some measure of coherence ('short', 'disruptive, noncohering' vs. 'long', 'all-encompassing' pw)
- some measure of diversity (2ω vs. 13ω)

Coherence (c)

- Coherence: how many morpheme types are included in the domain? (stem alone? stem plus prefix? plus prefix and suffix? etc.)
- N (morpheme types in domain) correlates with N (available morpheme types in the language):

Kendall's $\tau=3.55, p(\mathrm{rnd})=.001, N=303$ from 30 languages

Coherence (c)

- Coherence of a domain is relative to the number of available morphemes:

$$
\mathrm{c}=\frac{N \text { (morpheme types in domain) }}{N \text { (available morpheme types) }}
$$

Is c a typological (cross-linguistic) variable?

Coherence (c)

The variance between languages is greater than the variance within languages: $F(30,466)=3.89, p(r n d)=.0001$

Diversity (d)

- Since c is a typological variable, it is reasonable to take a per-language measurement on languageinternal diversity
- $d=\delta$, the number of non-isomorphic domains
- but δ depends on the number of logically possible nonisomorphic domains, e.g. if there is only \{prefix, stem\}, there are only 3 possible domains: (pf-st), (pf), (st)
- possible number of domains with v morpheme types:

Diversity (d)

- Ergo, define d relative to number of possible domains
- But d also depends (obviously) on the number of phonological processes in the language φ :

Kendall's $\tau=4.25, p(\mathrm{rnd})=2.2 \mathrm{e}-16, N$ (languages) $=31$

Diversity (d)

- Therefore, $d=\frac{\delta}{\varphi \sum_{\mathrm{k}=1}^{v} k}$

Areal factors

- Our db focuses on Sino-Tibetan, so test within ST
- Prominent areal factors in ST
- Indosphere vs. Sinosphere (Matisoff 1991, 1999)
- plus "Buffer Sphere" between the two

Areal factors in ST: previous evidence

- Order of Adj\&N (Dryer 2004, 2005)

$$
x^{2}(4,32)=14.35, p(\mathrm{rnd})=.0001
$$

Areal factors in ST: previous evidence

- Tone (Matisoff 1999, Maddieson 2005, own data)

Areal factors in ST: previous evidence

- Fusion of negation markers (Bickel \& Nichols 2005)

$X^{2}(4,10)=6.67, p(\mathrm{rnd})=.046$

Areal factors in ST: previous evidence

- Fusion of case markers (Bickel \& Nichols 2005)

$$
x^{2}(4,12)=7.22, p(\mathrm{rnd})=.05
$$

Areal factors in ST: testing c and d

- Coherence (c)

$F(2,114)=.88, p(\mathrm{rnd})=.41$
Combined Indosphere and Buffer Sphere: $F(1,115)=.04, p(\mathrm{rnd})=.84$

Areal factors in ST: testing c and d

- Diversity (d)

$F(2,8)=.08, p(\mathrm{rnd})=.93$
Combined Indosphere and Buffer Sphere: $F(1,9)=.19, p(\mathrm{rnd})=.64$

Areal factors: summary

- Despite ample evidence for Matisoff's spheres in ST, no evidence for sphere effects on c and d
- ST seems surprisingly consistent!
- Are c and d genealogically stable?
- Database still too poor for extensive testing, but there is preliminary evidence that between-stock variance is larger than within-stock variance
- Sino-Tibetan (10)
- Pama-Nyungan (3)
- Indo-European (3)

Genealogical factor: stock x coherence

$F(2,282)=4.09, p(\mathrm{rnd})=.017$ - preliminary, small non-ST samples!

Genealogical factor: stock x diversity

Conclusions

Factors governing the distribution of phonological word domains

- no support for universal constraints
- no support for areal patterns (spheres) within Sino-Tibetan
- limited support for genealogical stability, perhaps on the stock level

Overall distribution result of individual historical developments
Contrast with coherence of individual formatives (case, negation) that do evidence areal patterns in Sino-Tibetan

- individual formatives can escape the overall coherence profile of a language
- further support for individual historical sources of the observed distribution

Acknowledgments

- The AUTOTYP research team
- Johanna Nichols (Co-Director, Berkeley)
- Balthasar Bickel (Co-Director, Leipzig)
- Kristine Hildebrandt (Post-Doc, Leipzig)
- Tracy Alan Hall (Research Associate, Bloomington)
- Fernando Zúñiga (Research Associate, Santiago)
- RAs in Berkeley: Gabriela Caballero, Suzanne Wilhite
- RAs in Leipzig: Michael Riessler, Sven Siegmund, Sindy Poppitz, Franziska Crell, Jenny Seeg, Thomas Goldammer, Anja Gampe, Sebastian Hellmann
- Past team members: Kathi Stutz, Josh Wilbur, Rebecca Voll, Alena WitzlackMakarevich, Sandra Biewald, Aimee Lahaussois-Bartosik, Dave Peterson, Keith Sanders
- Funding: Swiss NSF Grant Nos. 08210-053455 (1998-2001, Bickel) and 6100627 (2001-2002, Bickel), German DFG Grant No. BI 799/2-1 (2003-2005, Bickel \& Hall), US NSF Grant No. 96-16448 (1998-2001, Nichols)

